test_sparse.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:Parallel-SGD 作者: angadgill 项目源码 文件源码
def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test):
    dense_svm.fit(X_train.toarray(), y_train)
    if sparse.isspmatrix(X_test):
        X_test_dense = X_test.toarray()
    else:
        X_test_dense = X_test
    sparse_svm.fit(X_train, y_train)
    assert_true(sparse.issparse(sparse_svm.support_vectors_))
    assert_true(sparse.issparse(sparse_svm.dual_coef_))
    assert_array_almost_equal(dense_svm.support_vectors_,
                              sparse_svm.support_vectors_.toarray())
    assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray())
    if dense_svm.kernel == "linear":
        assert_true(sparse.issparse(sparse_svm.coef_))
        assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray())
    assert_array_almost_equal(dense_svm.support_, sparse_svm.support_)
    assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test))
    assert_array_almost_equal(dense_svm.decision_function(X_test_dense),
                              sparse_svm.decision_function(X_test))
    assert_array_almost_equal(dense_svm.decision_function(X_test_dense),
                              sparse_svm.decision_function(X_test_dense))
    if isinstance(dense_svm, svm.OneClassSVM):
        msg = "cannot use sparse input in 'OneClassSVM' trained on dense data"
    else:
        assert_array_almost_equal(dense_svm.predict_proba(X_test_dense),
                                  sparse_svm.predict_proba(X_test), 4)
        msg = "cannot use sparse input in 'SVC' trained on dense data"
    if sparse.isspmatrix(X_test):
        assert_raise_message(ValueError, msg, dense_svm.predict, X_test)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号