def lr(train_sample, validation_sample, features):
log_base = np.e
lr_prob = LinearSVR(C=1, epsilon=0.1).fit(train_sample[features], np.log1p(train_sample['volume'])/np.log(log_base))\
.predict(validation_sample[features])
lr_prob = np.power(log_base, lr_prob) - 1
print_mape(validation_sample['volume'], lr_prob, 'LR')
return lr_prob
评论列表
文章目录