def predict(data, priceToPredict):
openingPriceTrain, openingPriceTest, closingPriceTrain, closingPriceTest = \
data["openingPriceTrain"], data["openingPriceTest"], data["closingPriceTrain"], data["closingPriceTest"]
clf = svm.LinearSVR()
clf.fit(openingPriceTrain, closingPriceTrain)
predicted2 = clf.predict(openingPriceTest)
score = clf.fit(openingPriceTrain, closingPriceTrain).score(openingPriceTest, closingPriceTest)
# print(score)
fig, ax = plotter.subplots()
ax.scatter(openingPriceTrain, closingPriceTrain)
ax.set_ylabel('Predicted SVM')
ax.scatter(closingPriceTest, clf.predict(openingPriceTest))
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
# plotter.show()
closingPriceTestArray = np.reshape(closingPriceTest,-1)
clfpr = clf.predict(openingPriceTest)
predictedArray = np.reshape(clfpr,-1)
print(pearsonr(closingPriceTestArray,predictedArray))
openingPriceToPredict = np.array([priceToPredict])
print(clf.predict(openingPriceToPredict))
return clf.predict(np.array([openingPriceToPredict]))
评论列表
文章目录