def test_linear_svr_evaluation(self):
"""
Check that the evaluation results are the same in scikit learn and coremltools
"""
ARGS = [ {},
{'C': 0.5, 'epsilon': 0.25},
{'dual': False, 'loss': 'squared_epsilon_insensitive'},
{'tol': 0.005},
{'fit_intercept': False},
{'intercept_scaling': 1.5}
]
input_names = self.scikit_data.feature_names
df = pd.DataFrame(self.scikit_data.data, columns=input_names)
for cur_args in ARGS:
print(cur_args)
cur_model = LinearSVR(**cur_args)
cur_model.fit(self.scikit_data['data'], self.scikit_data['target'])
spec = convert(cur_model, input_names, 'target')
df['prediction'] = cur_model.predict(self.scikit_data.data)
metrics = evaluate_regressor(spec, df)
self.assertAlmostEquals(metrics['max_error'], 0)
评论列表
文章目录