tbs_ml.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:eezzy 作者: 3Blades 项目源码 文件源码
def generate_base_classification():
    from sklearn.svm import LinearSVC, NuSVC, SVC
    from sklearn.tree import ExtraTreeClassifier, DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.gaussian_process import GaussianProcessClassifier
    from sklearn.linear_model import LogisticRegression, PassiveAggressiveClassifier, RidgeClassifier, SGDClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.naive_bayes import MultinomialNB, GaussianNB, BernoulliNB
    models = [
        #(LinearSVC, params('C', 'loss')),
#         (NuSVC, params('nu', 'kernel', 'degree')),
        #(SVC, params('C', 'kernel')),
        #(ExtraTreeClassifier, params('criterion', 'min_samples_split', 'min_samples_leaf')),
        (DecisionTreeClassifier, params('criterion', 'min_samples_split', 'min_samples_leaf')),
        (RandomForestClassifier, params('criterion', 'min_samples_split', 'min_samples_leaf', 'n_estimators')),
        #(GaussianProcessClassifier, None),
        (LogisticRegression, params('C', 'penalty')),
        #(PassiveAggressiveClassifier, params('C', 'loss')),
        #(RidgeClassifier, params('alpha')),
        # we do in-place modification of what the method params return in order to add
        # more loss functions that weren't defined in the method
        #(SGDClassifier, params('loss', 'penalty', 'alpha')['loss'].extend(['log', 'modified_huber'])),
        (KNeighborsClassifier, params('n_neighbors', 'leaf_size', 'p').update({
            'algorithm': ['auto', 'brute', 'kd_tree', 'ball_tree']
        })),
        (MultinomialNB, params('alpha')),
        #(GaussianNB, None),
        #(BernoulliNB, params('alpha'))
    ]

    return models
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号