def SVR_Model(fw,train_lines,test_train_lines,test_lines,mn_time):
features_train=[]
labels_train=[]
features_test=[]
labels_test=[]
for i,line in enumerate(train_lines):
label,feature=parsePoint(line)
labels_train.append(label)
features_train.append(feature)
for i,line in enumerate(test_lines):
label,feature=parsePoint(line)
labels_test.append(label)
features_test.append(feature)
X=np.array(features_train)
y=np.array(labels_train)
X_test=np.array(features_test)
svr_rbf = SVR(kernel=KERNEL, C=C_VALUE)
y_rbf = svr_rbf.fit(X, y).predict(X_test)
avgTime=getAvgTime(features_train)
for i,predict in enumerate(y_rbf):
time=getTime(features_test[i])
weighting=1-(avgTime-time)/avgTime
weighting=math.sqrt(math.sqrt(math.sqrt((weighting+weighting)/2)))
#???????????????????????????
#??????????????????????????????????(weighting=1)
if(mn_time==2 or mn_time==4):
weighting=1
predict=predict*weighting
printResult(fw,labels_test[i],predict,mn_time)
time_predict.py 文件源码
python
阅读 17
收藏 0
点赞 0
评论 0
评论列表
文章目录