def SVM(train, test, tunings=None, smoteit=True, bin=True, regress=False):
"SVM "
if not isinstance(train, pd.core.frame.DataFrame):
train = csv2DF(train, as_mtx=False, toBin=bin)
if not isinstance(test, pd.core.frame.DataFrame):
test = csv2DF(test, as_mtx=False, toBin=True)
if smoteit:
train = SMOTE(train, resample=True)
# except: set_trace()
if not tunings:
if regress:
clf = SVR()
else:
clf = SVC()
else:
if regress:
clf = SVR()
else:
clf = SVC()
features = train.columns[:-1]
klass = train[train.columns[-1]]
# set_trace()
clf.fit(train[features], klass)
actual = test[test.columns[-1]].as_matrix()
try: preds = clf.predict(test[test.columns[:-1]])
except: set_trace()
return actual, preds
评论列表
文章目录