def __init__(self, num_features, training_window, training_interval):
"""
num_features: the length of the feature vector
training_window: the number of previous data points to train on
training_interval: the number of data points between training periods
"""
self.num_features = num_features
self.training_interval = training_interval
self.training_window = training_window
# Init sample matrix, a deque of feature vectors
self.samples = deque(maxlen=training_window)
self.targets = deque(maxlen=training_window)
#self.model = SVR(kernel='rbf', C=1000)
self.model = BayesianRidge()
self.severity = blr.Severity()
self.alpha = 1.0
self.parameters = 0 # Training parameters
self.train_count = 0
self.have_trained = False
self.pred_range = [0.0, np.inf] # upper and lower bounds for predictions
评论列表
文章目录