def _conversion_and_evaluation_helper_for_linear_svc(self, class_labels):
ARGS = [ {},
{'C' : .75, 'loss': 'hinge'},
{'penalty': 'l1', 'dual': False},
{'tol': 0.001, 'fit_intercept': False},
{'intercept_scaling': 1.5}
]
x, y = GlmCassifierTest._generate_random_data(class_labels)
column_names = ['x1', 'x2']
df = pd.DataFrame(x, columns=column_names)
for cur_args in ARGS:
print(class_labels, cur_args)
cur_model = LinearSVC(**cur_args)
cur_model.fit(x, y)
spec = convert(cur_model, input_features=column_names,
output_feature_names='target')
df['prediction'] = cur_model.predict(x)
cur_eval_metics = evaluate_classifier(spec, df, verbose=False)
self.assertEquals(cur_eval_metics['num_errors'], 0)
评论列表
文章目录