def make_classification_example(axis, random_state):
X, y = make_blobs(n_samples=100, n_features=2, centers=2, cluster_std=2.7, random_state=random_state)
axis.scatter(X[y == 0, 0], X[y == 0, 1], color="red", s=10, label="Disease")
axis.scatter(X[y == 1, 0], X[y == 1, 1], color="blue", s=10, label="Healthy")
clf = LinearSVC().fit(X, y)
# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 7)
yy = a * xx - (clf.intercept_[0]) / w[1]
# plot the line, the points, and the nearest vectors to the plane
axis.plot(xx, yy, 'k-', color="black", label="Model")
ax1.tick_params(labelbottom='off', labelleft='off')
ax1.set_xlabel("Gene 1")
ax1.set_ylabel("Gene 2")
ax1.legend()
figure.classification.vs.regression.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录