def grid_retrain_in_x(self):
gamma_range = np.logspace(-15, 3, 19, base=2)
param_grid = dict(gamma=gamma_range)
if len(np.unique(self.y_ex)) < 2:
return 1, 1
try:
cv = StratifiedShuffleSplit(self.y_ex, n_iter=5, test_size=.2)
grid = GridSearchCV(SVC(C=1e5), param_grid=param_grid, cv=cv, n_jobs=-1)
grid.fit(self.X_ex, self.y_ex)
rbf_svc2 = grid.best_estimator_
except ValueError:
rbf_svc2 = SVC(C=1e5)
rbf_svc2.fit(self.X_ex, self.y_ex)
self.set_clf2(rbf_svc2)
return self.benchmark()
评论列表
文章目录