def example_of_correlating_two_components(raw_data, raw_data2, labels, num_subjects, num_epochs_per_subj):
# aggregate the kernel matrix to save memory
svm_clf = svm.SVC(kernel='precomputed', shrinking=False, C=1)
clf = Classifier(svm_clf, epochs_per_subj=num_epochs_per_subj)
num_training_samples=num_epochs_per_subj*(num_subjects-1)
clf.fit(list(zip(raw_data[0:num_training_samples], raw_data2[0:num_training_samples])),
labels[0:num_training_samples])
X = list(zip(raw_data[num_training_samples:], raw_data2[num_training_samples:]))
predict = clf.predict(X)
print(predict)
print(clf.decision_function(X))
test_labels = labels[num_training_samples:]
incorrect_predict = hamming(predict, np.asanyarray(test_labels)) * num_epochs_per_subj
logger.info(
'when aggregating the similarity matrix to save memory, '
'the accuracy is %d / %d = %.2f' %
(num_epochs_per_subj-incorrect_predict, num_epochs_per_subj,
(num_epochs_per_subj-incorrect_predict) * 1.0 / num_epochs_per_subj)
)
# when the kernel matrix is computed in portion, the test data is already in
print(clf.score(X, test_labels))
评论列表
文章目录