def test_multinomial():
steps = 100
mode_ = mode
if mode == 'FAST_COMPILE':
mode_ = 'FAST_RUN'
if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or
mode == 'Mode' and config.linker in ['py']):
sample_size = (49, 5)
else:
sample_size = (450, 6)
mode_ = theano.compile.mode.get_mode(mode_)
# print ''
# print 'ON CPU:'
pvals = numpy.asarray(numpy.random.uniform(size=sample_size))
pvals = numpy.apply_along_axis(lambda row: row / numpy.sum(row), 1, pvals)
R = MRG_RandomStreams(234, use_cuda=False)
# Note: we specify `nstreams` to avoid a warning.
m = R.multinomial(pvals=pvals, dtype=config.floatX, nstreams=30 * 256)
f = theano.function([], m, mode=mode_)
# theano.printing.debugprint(f)
out = f()
basic_multinomialtest(f, steps, sample_size, pvals, n_samples=1,
prefix='mrg ')
sys.stdout.flush()
if mode != 'FAST_COMPILE' and cuda_available:
# print ''
# print 'ON GPU:'
R = MRG_RandomStreams(234, use_cuda=True)
pvals = numpy.asarray(pvals, dtype='float32')
# We give the number of streams to avoid a warning.
n = R.multinomial(pvals=pvals, dtype='float32', nstreams=30 * 256)
# well, it's really that this test w GPU doesn't make sense otw
assert n.dtype == 'float32'
f = theano.function(
[],
theano.sandbox.cuda.basic_ops.gpu_from_host(n),
mode=mode_.including('gpu'))
# theano.printing.debugprint(f)
gpu_out = f()
sys.stdout.flush()
basic_multinomialtest(f, steps, sample_size, pvals, n_samples=1,
prefix='gpu mrg ')
numpy.testing.assert_array_almost_equal(out, gpu_out, decimal=6)
评论列表
文章目录