def grad(self, inputs, output_gradients):
V, W, b, d = inputs
dCdH, = output_gradients
# make all of these ops support broadcasting of scalar b to vector b and eplace the zeros_like in all their grads
# print dCdH.broadcastable
# print "dCdH.broadcastable"
# quit(-1)
# dCdH = printing.Print("dCdH = ",["shape"])
# Make sure the broadcasting pattern of the gradient is the the same
# as the initial variable
dCdV = theano.tensor.nnet.convTransp3D(
W, T.zeros_like(V[0, 0, 0, 0, :]), d, dCdH, V.shape[1:4])
dCdV = T.patternbroadcast(dCdV, V.broadcastable)
WShape = W.shape
dCdW = theano.tensor.nnet.convGrad3D(V, d, WShape, dCdH)
dCdW = T.patternbroadcast(dCdW, W.broadcastable)
dCdb = T.sum(dCdH, axis=(0, 1, 2, 3))
dCdb = T.patternbroadcast(dCdb, b.broadcastable)
dCdd = grad_undefined(
self, 3, inputs[3],
"The gradient of Conv3D with respect to the convolution"
" stride is undefined because Conv3D is only defined for"
" integer strides.")
if 'name' in dir(dCdH) and dCdH.name is not None:
dCdH_name = dCdH.name
else:
dCdH_name = 'anon_dCdH'
if 'name' in dir(V) and V.name is not None:
V_name = V.name
else:
V_name = 'anon_V'
if 'name' in dir(W) and W.name is not None:
W_name = W.name
else:
W_name = 'anon_W'
if 'name' in dir(b) and b.name is not None:
b_name = b.name
else:
b_name = 'anon_b'
dCdV.name = 'Conv3D_dCdV(dCdH=' + dCdH_name + ',V=' + V_name + ')'
dCdW.name = ('Conv3D_dCdW(dCdH=' + dCdH_name + ',V=' + V_name +
',W=' + W_name + ')')
dCdb.name = ('Conv3D_dCdb(dCdH=' + dCdH_name + ',V=' + V_name +
',W=' + W_name + ',b=' + b_name + ')')
return [dCdV, dCdW, dCdb, dCdd]
评论列表
文章目录