def grad(self, inputs, g_outputs):
r"""The gradient function should return
.. math:: \sum_n\left(W_n\frac{\partial\,w_n}
{\partial a_{ij}} +
\sum_k V_{nk}\frac{\partial\,v_{nk}}
{\partial a_{ij}}\right),
where [:math:`W`, :math:`V`] corresponds to ``g_outputs``,
:math:`a` to ``inputs``, and :math:`(w, v)=\mbox{eig}(a)`.
Analytic formulae for eigensystem gradients are well-known in
perturbation theory:
.. math:: \frac{\partial\,w_n}
{\partial a_{ij}} = v_{in}\,v_{jn}
.. math:: \frac{\partial\,v_{kn}}
{\partial a_{ij}} =
\sum_{m\ne n}\frac{v_{km}v_{jn}}{w_n-w_m}
"""
x, = inputs
w, v = self(x)
# Replace gradients wrt disconnected variables with
# zeros. This is a work-around for issue #1063.
gw, gv = _zero_disconnected([w, v], g_outputs)
return [EighGrad(self.UPLO)(x, w, v, gw, gv)]
评论列表
文章目录