def cmp_dot22(self, b_shp, c_shp):
av = numpy.zeros((0, 0), dtype=self.dtype)
bv = self.rand(*b_shp)
cv = self.rand(*c_shp)
a = self.shared(av, 'a')
b = self.shared(bv, 'b')
c = self.shared(cv, 'c')
b_t = self.shared(bv.T, 'b.T')
c_t = self.shared(cv.T, 'c.T')
b_dev = b.get_value(borrow=False, return_internal_type=True)
c_dev = c.get_value(borrow=False, return_internal_type=True)
bt_dev = b_t.get_value(borrow=False, return_internal_type=True)
ct_dev = c_t.get_value(borrow=False, return_internal_type=True)
f_nn = theano.function([], [], updates=[(a, tensor.dot(b, c))],
mode=self.mode)
# print 'class name:', self.__class__.__name__
# theano.printing.debugprint(f_nn)
f_nt = theano.function([], [], updates=[(a, tensor.dot(b, c_t.T))],
mode=self.mode)
f_tn = theano.function([], [], updates=[(a, tensor.dot(b_t.T, c))],
mode=self.mode)
f_tt = theano.function([], [], updates=[(a, tensor.dot(b_t.T, c_t.T))],
mode=self.mode)
# Try with all stride patterns, and all transposed pattern
for step_signs in itertools_product((-1, 1), repeat=4):
for step in (1, 2):
b_step1, b_step2, c_step1, c_step2 = (s * step
for s in step_signs)
b.set_value(b_dev.copy()[::b_step1, ::b_step2], borrow=True)
c.set_value(c_dev.copy()[::c_step1, ::c_step2], borrow=True)
b_t.set_value(bt_dev.copy()[::b_step2, ::b_step1], borrow=True)
c_t.set_value(ct_dev.copy()[::c_step2, ::c_step1], borrow=True)
# Numpy result
a_n = numpy.dot(bv[::b_step1, ::b_step2],
cv[::c_step1, ::c_step2])
f_nn()
assert numpy.allclose(a.get_value(), a_n)
f_nt()
assert numpy.allclose(a.get_value(), a_n)
f_tn()
assert numpy.allclose(a.get_value(), a_n)
f_tt()
assert numpy.allclose(a.get_value(), a_n)
评论列表
文章目录