def test_convert_conv1d_model_compute_scores(self):
if (self.run_graph_tests==False):
return
deeplift_model = kc.convert_graph_model(
model=self.keras_model,
nonlinear_mxts_mode=NonlinearMxtsMode.Rescale)
deeplift_contribs_func = deeplift_model.\
get_target_contribs_func(
find_scores_layer_name=["inp1", "inp2"],
pre_activation_target_layer_name="output_preact")
grads_inp1, grads_inp2 = self.grad_func(self.inp1, self.inp2)
np.testing.assert_almost_equal(
np.array(deeplift_contribs_func(task_idx=0,
input_data_list={
'inp1': self.inp1,
'inp2': self.inp2},
input_references_list={
'inp1': np.zeros_like(self.inp1),
'inp2': np.zeros_like(self.inp2)},
batch_size=10,
progress_update=None)),
#when biases are 0 and ref is 0, deeplift is the same as grad*inp
np.array([grads_inp1*self.inp1,
grads_inp2*self.inp2]), decimal=6)
评论列表
文章目录