def fit(self, weights, o_error, tpo):
gradients = theano.grad(o_error, weights)
updates = []
for v, w, g in zip(self.t_velocity, weights, gradients):
#gradient = T.grad(o_error ,w)
new_velocity = tpo["momentum_rate"] * v - tpo["learn_rate"] * g
new_weights = w + new_velocity
updates.append((w, new_weights))
updates.append((v, new_velocity))
return updates
###### Vanilla SGD
########################################
评论列表
文章目录