def Recurrence(processed_frames, h0, reset):
"""
processed_frames.shape: (batch size, n frames, DIM)
h0.shape: (batch size, N_GRUS, DIM)
reset.shape: ()
output.shape: (batch size, n frames, DIM)
"""
# print "warning no recurrence"
# return T.zeros_like(processed_frames), h0
learned_h0 = lib.param(
'Recurrence.h0',
numpy.zeros((N_GRUS, DIM), dtype=theano.config.floatX)
)
learned_h0 = T.alloc(learned_h0, h0.shape[0], N_GRUS, DIM)
learned_h0 = T.patternbroadcast(learned_h0, [False] * learned_h0.ndim)
h0 = theano.ifelse.ifelse(reset, learned_h0, h0)
gru0 = lib.ops.LowMemGRU('Recurrence.GRU0', DIM, DIM, processed_frames, h0=h0[:, 0])
grus = [gru0]
for i in xrange(1, N_GRUS):
gru = lib.ops.LowMemGRU('Recurrence.GRU'+str(i), DIM, DIM, grus[-1], h0=h0[:, i])
grus.append(gru)
last_hidden = T.stack([gru[:,-1] for gru in grus], axis=1)
return (grus[-1], last_hidden)
评论列表
文章目录