def get_cost(self, X, Y, X_sizes):
"""
Calculates cost for each values in mini batch, also
regularizes all the input parameters and then returns
final cost function as theano variable
"""
cost_fn, _ = theano.scan(
fn=self.get_likelihood,
sequences=[X, Y, X_sizes]
)
cost_fn = cost_fn.mean()
cost_fn += self.reg_lambda * T.sqr(self.W_c_r).sum() / 2.
cost_fn += self.reg_lambda * T.sqr(self.W_c_l).sum() / 2.
cost_fn += self.reg_lambda * T.sqr(self.W_conv).sum() / 2.
cost_fn += self.reg_lambda * T.sqr(self.W_output).sum() / 2.
cost_fn += self.reg_lambda * T.sqr(self.b_output).sum() / 2.
# Regularizing word embedding
cost_fn += self.reg_lambda * T.sqr(self.vector_dict).sum() / 2
return cost_fn
rcnn_class.py 文件源码
python
阅读 84
收藏 0
点赞 0
评论 0
评论列表
文章目录