answer_pointer_layer.py 文件源码

python
阅读 45 收藏 0 点赞 0 评论 0

项目:MachineComprehension 作者: sa-j 项目源码 文件源码
def __init__(self, incoming, num_units, max_steps, peepholes=False, mask_input=None, **kwargs):
        """
        initialization
        :param incoming: bidirectional mLSTM for passane
        :param num_units:
        :param max_steps: max num steps to generate answer words, can be tensor scalar variable
        :param peepholes:
        :param mask_input: passage's length mask
        :param kwargs:
        """
        super(AnsPointerLayer, self).__init__(incoming, num_units, peepholes=peepholes,
                                              precompute_input=False, mask_input=mask_input,
                                              only_return_final=False, **kwargs)
        self.max_steps = max_steps
        # initializes attention weights
        input_shape = self.input_shapes[0]
        num_inputs = np.prod(input_shape[2:])
        self.V_pointer = self.add_param(init.Normal(0.1), (num_inputs, num_units), 'V_pointer')
        # doesn't need transpose
        self.v_pointer = self.add_param(init.Normal(0.1), (num_units, 1), 'v_pointer')
        self.W_a_pointer = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_a_pointer')
        self.b_a_pointer = self.add_param(init.Constant(0.), (1, num_units), 'b_a_pointer')
        self.c_pointer = self.add_param(init.Constant(0.), (1, 1), 'c_pointer')
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号