def test_get_output_for(self):
keys_var = T.ftensor3()
values_var = T.ftensor3()
mask_var = T.fmatrix()
queries_var = T.ftensor3()
keys_layer = L.InputLayer((None, None, 3), input_var=keys_var)
values_layer = L.InputLayer((None, None, 5), input_var=values_var)
mask_layer = L.InputLayer((None, None), input_var=mask_var)
queries_layer = L.InputLayer((None, None, 7), input_var=queries_var)
attention_layer = BahdanauKeyValueAttentionLayer([keys_layer, values_layer, mask_layer, queries_layer], 9)
attention_outputs = L.get_output(attention_layer)
fn = theano.function([keys_var, values_var, mask_var, queries_var], attention_outputs, on_unused_input='warn')
keys = np.random.rand(32, 13, 3).astype(np.float32)
values = np.random.rand(32, 13, 5).astype(np.float32)
mask = np.random.rand(32, 13).astype(np.float32)
queries = np.random.rand(32, 17, 7).astype(np.float32)
_att = fn(keys, values, mask, queries)
self.assertEqual((32, 17, 5), _att.shape)
test_bahdanauAttentionLayer.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录