marginal.py 文件源码

python
阅读 61 收藏 0 点赞 0 评论 0

项目:mixedvines 作者: asnelt 项目源码 文件源码
def fit(samples, is_continuous):
        '''
        Fits a distribution to the given samples.

        Parameters
        ----------
        samples : array_like
            Array of samples.
        is_continuous : bool
            If `True` then a continuous distribution is fitted.  Otherwise, a
            discrete distribution is fitted.

        Returns
        -------
        best_marginal : Marginal
            The distribution fitted to `samples`.
        '''
        # Mean and variance
        mean = np.mean(samples)
        var = np.var(samples)
        # Set suitable distributions
        if is_continuous:
            if np.any(samples <= 0):
                options = [norm]
            else:
                options = [norm, gamma]
        else:
            if var > mean:
                options = [poisson, binom, nbinom]
            else:
                options = [poisson, binom]
        params = np.empty(len(options), dtype=object)
        marginals = np.empty(len(options), dtype=object)
        # Fit parameters and construct marginals
        for i, dist in enumerate(options):
            if dist == poisson:
                params[i] = [mean]
            elif dist == binom:
                param_n = np.max(samples)
                param_p = np.sum(samples) / (param_n * len(samples))
                params[i] = [param_n, param_p]
            elif dist == nbinom:
                param_n = mean * mean / (var - mean)
                param_p = mean / var
                params[i] = [param_n, param_p]
            else:
                params[i] = dist.fit(samples)
            rv_mixed = dist(*params[i])
            marginals[i] = Marginal(rv_mixed)
        # Calculate Akaike information criterion
        aic = np.zeros(len(options))
        for i, marginal in enumerate(marginals):
            aic[i] = 2 * len(params[i]) \
                     - 2 * np.sum(marginal.logpdf(samples))
        best_marginal = marginals[np.argmin(aic)]
        return best_marginal
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号