def getMapBins(map_counts, num_bins): #e.g. latlon_map[0]
#find upper limit of percentile for 0 count (for all data is something like 30th)
bottom = sp.percentileofscore(map_counts.flatten(), 0.0, kind='weak')
#define 10 percentile bins, evenly divide rest of bins above 0 count into nine chunks
step = (100-bottom)/(num_bins-1)
percentiles = [0]
for ix in xrange(0,num_bins-1):
percentiles.append(bottom+(ix*step))
#find counts that bound each bin
countRanges = []
for bin in percentiles:
countRanges.append(round(np.percentile(map_counts,bin),0))
countRanges.append(round(np.amax(map_counts),0))
#define fill colors for each of the bins
fillColors = []
for ix in xrange(0,num_bins):
#the 255*0.8 is the max opacity
fillColors.append([66, 91, 161, (255*0.8)*(ix/float(num_bins-1))])
return percentiles, countRanges, fillColors
# Create the actual data to power our map overlay
评论列表
文章目录