def test_w_prep_set_params():
"""[Model Selection] Test run with preprocessing, sep param dists."""
evl = Evaluator(mape_scorer, cv=5, shuffle=False, random_state=100,
verbose=2)
params = {'no.ols': {'offset': randint(3, 6)},
'pr.ols': {'offset': randint(1, 3)},
}
with open(os.devnull, 'w') as f, redirect_stdout(f):
evl.fit(X, y,
estimators={'pr': [OLS()], 'no': [OLS()]},
param_dicts=params,
preprocessing={'pr': [Scale()], 'no': []},
n_iter=10)
np.testing.assert_approx_equal(
evl.results['test_score-m']['no.ols'],
-18.684229451043198)
np.testing.assert_approx_equal(
evl.results['test_score-m']['pr.ols'],
-7.2594502123869491)
assert evl.results['params']['no.ols']['offset'] == 3
assert evl.results['params']['pr.ols']['offset'] == 1
评论列表
文章目录