def main():
fig = plt.figure()
x = np.linspace(0, 1, 100)
sizes = [1, 2, 20, 50]
fig_row, fig_col = 2, 4
# Mean of i.i.d uniform
for i, n in enumerate(sizes):
ax = fig.add_subplot(fig_row, fig_col, i + 1)
data, gaussian = central_limit(uniform_dist.rvs, n, 1000)
ax.hist(data, bins=20, normed=True, alpha=0.7)
plt.plot(x, gaussian.pdf(x), 'r')
plt.title('n={0}'.format(n))
# Mean of i.i.d beta(1, 2)
for i, n in enumerate(sizes):
ax = fig.add_subplot(fig_row, fig_col, i + fig_col + 1)
data, gaussian = central_limit(beta_dist(1, 2).rvs, n, 1000)
ax.hist(data, bins=20, normed=True, alpha=0.7)
plt.plot(x, gaussian.pdf(x), 'r')
plt.title('n={0}'.format(n))
plt.show()
评论列表
文章目录