def hu_describe(data, uid, part=""):
if len(data) == 0:
nanid = -7777
d = { "vol_%s" % part: nanid,
"min_%s" % part: nanid,
"max_%s" % part: nanid,
"mean_%s" % part: nanid,
"variance_%s" % part: nanid,
"skewness_%s" % part: nanid,
"kurtosis_%s" % part: nanid
}
else:
desc = stats.describe(data, axis=None, nan_policy='omit') #default policy is 'propagate'
#names = ["nobs", "min", "max", "mean", "variance", "skewness", "kurtosis"]
d = { "vol_%s" % part: desc.nobs,
"min_%s" % part: desc.minmax[0],
"max_%s" % part: desc.minmax[1],
"mean_%s" % part: desc.mean,
"variance_%s" % part: desc.variance,
"skewness_%s" % part: desc.skewness,
"kurtosis_%s" % part: desc.kurtosis
}
#columns = ["id", "n_volume_%s" % part, "hu_min_%s" % part, "hu_nmax_%s" % part, "hu_mean_%s" % part, "hu_variance_%s" % part,"hu_skewness_%s" % part, "hu_kurtosis_%s" % part]
#d = [uid, desc.nobs, desc.minmax[0], desc.minmax[1], desc.mean, desc.variance, desc.skewness, desc.kurtosis]
#columns = sorted(d.keys())
df = pd.DataFrame(d, index=[uid])
#df = pd.DataFrame.from_records(d, columns=columns, index=["id"])
#df.reset_index(level=0, inplace=True)
#df.sort_index(axis=1)
#df.index.name = "id"
#df = pd.DataFrame.from_dict(d, orient='index')
return df
评论列表
文章目录