def randomGammaCorrection(image):
lower = 0.5
upper = 1.5
mu = 1
sigma = 0.5
alpha = stats.truncnorm((lower-mu) / sigma, (upper - mu) / sigma, loc=mu, scale=sigma)
image = (pow(image/255.0, alpha.rvs(1)[0]) * 255).astype(np.uint8)
return image
# def rle(img):
# '''
# img: numpy array, 1 - mask, 0 - background
# Returns run length as string formated
# '''
# bytes = np.where(img.flatten() == 1)[0]
# runs = []
# prev = -2
# for b in bytes:
# if (b > prev + 1): runs.extend((b + 1, 0))
# runs[-1] += 1
# prev = b
#
# return ' '.join([str(i) for i in runs])
# https://www.kaggle.com/stainsby/fast-tested-rle
评论列表
文章目录