def likelihood(parameter_vector):
param_dict = {pname: pvalue for pname, pvalue in zip(pysb_sampled_parameter_names, parameter_vector)}
for pname, pvalue in param_dict.items():
#Change model parameter values to current location in parameter space
model.parameters[pname].value = 10**(pvalue)
#Simulate experimentally measured Ctotal values.
solver.run()
#Calculate log probability contribution from simulated experimental values.
logp_ctotal = np.sum(like_ctot.logpdf(solver.yobs['C_total']))
#If model simulation failed due to integrator errors, return a log probability of -inf.
if np.isnan(logp_ctotal):
logp_ctotal = -np.inf
return logp_ctotal
# Add vector of PySB rate parameters to be sampled as unobserved random variables to DREAM with uniform priors.
example_sample_robertson_with_dream.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录