def load_lip_data_t2(image_id, flip=False, is_test=False):
fine_size=64
image_id = image_id[:-1]
image_path = './datasets/human/masks/{}.png'.format(image_id)
img_A = scipy.misc.imread(image_path).astype(np.float)
rows = img_A.shape[0]
cols = img_A.shape[1]
img_A = scipy.misc.imresize(img_A, [fine_size, fine_size])
img_B = np.zeros((fine_size, fine_size), dtype=np.float64)
with open('./datasets/human/pose/{}.txt'.format(image_id), 'r') as f:
lines = f.readlines()
points = lines[0].split(',')
for idx, point in enumerate(points):
if idx % 2 == 0:
c_ = int(point)
c_ = min(c_, cols-1)
c_ = max(c_, 0)
c_ = int(fine_size * 1.0 * c_ / cols)
else:
r_ = int(point)
r_ = min(r_, rows-1)
r_ = max(r_, 0)
r_ = int(fine_size * 1.0 * r_ / rows)
if c_ + r_ == 0:
continue
var = multivariate_normal(mean=[r_, c_], cov=2)
for i in xrange(fine_size):
for j in xrange(fine_size):
img_B[i, j] += var.pdf([i, j]) * 1.0
img_A = img_A/127.5 - 1.
img_BA = np.concatenate((img_B[:,:,np.newaxis], img_A), axis=2)
# print img_BA.shape
# img_AB shape: (fine_size, fine_size, input_c_dim + output_c_dim)
return img_BA
#------------------------------------------------------------
评论列表
文章目录