def testEntropy(self):
with self.test_session():
shift = np.array([[-1, 0, 1], [-1, -2, -3]], dtype=np.float32)
diag = np.array([[1, 2, 3], [2, 3, 2]], dtype=np.float32)
actual_mvn_entropy = np.concatenate([
[stats.multivariate_normal(shift[i], np.diag(diag[i]**2)).entropy()]
for i in range(len(diag))])
fake_mvn = self._cls()(
ds.MultivariateNormalDiag(
array_ops.zeros_like(shift),
array_ops.ones_like(diag),
validate_args=True),
bs.AffineLinearOperator(
shift,
scale=la.LinearOperatorDiag(diag, is_non_singular=True),
validate_args=True),
validate_args=True)
self.assertAllClose(actual_mvn_entropy,
fake_mvn.entropy().eval())
transformed_distribution_test.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录