generative_alg.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:nli_generation 作者: jstarc 项目源码 文件源码
def diversity(dev, gen_test, beam_size, hypo_len, noise_size, per_premise, samples):
    step = len(dev[0]) / samples
    sind = [i * step for i in range(samples)]
    p = Progbar(per_premise * samples)
    for i in sind:
        hypos = []
        unique_words = []
        hypo_list = []
        premise = dev[0][i]
        prem_list = set(cut_zeros(list(premise)))        
        while len(hypos) < per_premise:
            label = np.argmax(dev[2][i])
            words = single_generate(premise, label, gen_test, beam_size, hypo_len, noise_size)
            hypos += [str(ex) for ex in words]
            unique_words += [int(w) for ex in words for w in ex if w > 0]
            hypo_list += [set(cut_zeros(list(ex))) for ex in words]

        jacks = []  
        prem_jacks = []
        for u in range(len(hypo_list)):
            sim_prem = len(hypo_list[u] & prem_list)/float(len(hypo_list[u] | prem_list))
            prem_jacks.append(sim_prem)
            for v in range(u+1, len(hypo_list)):
                sim = len(hypo_list[u] & hypo_list[v])/float(len(hypo_list[u] | hypo_list[v]))
                jacks.append(sim)
        avg_dist_hypo = 1 -  np.mean(jacks)
        avg_dist_prem = 1 -  np.mean(prem_jacks)
        d = entropy(Counter(hypos).values()) 
        w = entropy(Counter(unique_words).values())
        p.add(len(hypos), [('diversity', d),('word_entropy', w),('avg_dist_hypo', avg_dist_hypo), ('avg_dist_prem', avg_dist_prem)])
    arrd = p.sum_values['diversity']
    arrw = p.sum_values['word_entropy']
    arrj = p.sum_values['avg_dist_hypo']
    arrp = p.sum_values['avg_dist_prem']

    return arrd[0] / arrd[1], arrw[0] / arrw[1], arrj[0] / arrj[1],  arrp[0] / arrp[1]
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号