def predict(self, X):
"""
Predict values using the model
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Returns
-------
C : numpy array of shape [n_samples, n_outputs]
Predicted values.
"""
dim = len(self._classifiers)
ensemble_output = np.zeros((len(X),dim))
# Z-score
X = (X-self._med)/(self._std+self._noise)
for i in range(0,dim):
xrot_z = X.dot(self._inforotar[i])
ensemble_output[:,i] = self._classifiers[i].predict(xrot_z)
y_pred = mode(ensemble_output, axis=1)[0]
return y_pred
评论列表
文章目录