def getModelDiffs(self, dependentContainer, playoffTeamsOnly=False):
## so generate our model here based on the data provided in each
## stat container, then output a new statContainer object with
## the values of the model diffs
print "Consistency check between %s and %s containers is a %r" % (self.getShortStatName(), dependentContainer.getShortStatName(), consistencyCheck(self, dependentContainer))
x_values = self.getStat(playoffTeamsOnly)
y_values = dependentContainer.getStat(playoffTeamsOnly)
gradient, intercept, r_value, p_value, std_err = stats.linregress( x_values, y_values)
modelDiffs = []
def modelValue(x, gradient, intercept):
return (x*gradient + intercept)
for i in range(0, len(x_values)):
modelDiffs.append(y_values[i] - modelValue(x_values[i], gradient, intercept))
return statContainer("%sby%s Model Diffs" % (dependentContainer.getShortStatName(), self.getShortStatName()), "Deltas from the Model for %s by %s, gradient=%.3f, intercept=%.3f" % (dependentContainer.getLongStatName, self.getShortStatName(), gradient, intercept), modelDiffs, self.getTeamIds(playoffTeamsOnly), self.getTeamNames(playoffTeamsOnly), self.getYears(playoffTeamsOnly), self.getMadePlayoffsList(playoffTeamsOnly))
评论列表
文章目录