def ma_ribbon(df, ma_series):
ma_array = np.zeros([len(df)])
for idx, ma_len in enumerate(ma_series):
key = 'EMA_CLOSE_' + str(ma_len)
ema(df, ma_len, field = 'close')
ma_array[idx] = df[key][-1]
corr, pval = stats.spearmanr(ma_array, range(len(ma_series), 0, -1))
dist = max(ma_array) - min(ma_array)
df["MARIBBON_CORR"][-1] = corr * 100
df["MARIBBON_PVAL"][-1] = pval * 100
df["MARIBBON_DIST"][-1] = dist
评论列表
文章目录