def test():
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s : " +
"%(module)s (%(lineno)s) - %(levelname)s - %(message)s")
data = [((f[0], f[1]), float(f[2]))
for f in [line.strip().split("|||")
for line in open(sys.argv[1])]]
print "sample data:", data[:3]
train_data, devel_data, test_data = cut(data)
logging.info('loading model...')
glove_embedding = GloveEmbedding(sys.argv[2])
logging.info('done!')
dim = int(sys.argv[3])
X_train = featurize(train_data, glove_embedding, dim)
Y_train = np.array([e[1] for e in train_data])
logging.info("Input shape: {0}".format(X_train.shape))
print X_train[:3]
logging.info("Label shape: {0}".format(Y_train.shape))
print Y_train[:3]
input_dim = X_train.shape[1]
output_dim = 1
model = create_model(input_dim, output_dim)
model.fit(X_train, Y_train, nb_epoch=int(sys.argv[4]), batch_size=32)
X_devel = featurize(devel_data, glove_embedding, dim)
Y_devel = np.array([e[1] for e in devel_data])
pred = model.predict_proba(X_devel, batch_size=32)
corr = spearmanr(pred, Y_devel)
print "Spearman's R: {0}".format(corr)
评论列表
文章目录