def test_resume(db_path, gt_model):
def model(parameter):
return {"data": parameter["mean"] + sp.randn()}
prior = Distribution(mean=RV("uniform", 0, 5))
def distance(x, y):
x_data = x["data"]
y_data = y["data"]
return abs(x_data - y_data)
abc = ABCSMC(model, prior, distance)
run_id = abc.new(db_path, {"data": 2.5}, gt_model=gt_model)
print("Run ID:", run_id)
hist_new = abc.run(minimum_epsilon=0, max_nr_populations=1)
assert hist_new.n_populations == 1
abc_continued = ABCSMC(model, prior, distance)
run_id_continued = abc_continued.load(db_path, run_id)
print("Run ID continued:", run_id_continued)
hist_contd = abc_continued.run(minimum_epsilon=0, max_nr_populations=1)
assert hist_contd.n_populations == 2
assert hist_new.n_populations == 2
评论列表
文章目录