def create_labeled_data(aud_sample, nasal=0):
num_windows = (len(aud_sample) - WINDOW_SIZE)/WINDOW_STRIDE
features = np.zeros((num_windows, WINDOW_SIZE))
labels = np.zeros(num_windows)
idx = 0
for i in range(0, len(aud_sample), WINDOW_STRIDE):
window = aud_sample[i:i+WINDOW_SIZE]
for j in range(len(window), WINDOW_SIZE):
window = np.append(window,0)
if is_periodic(window) is False:
continue
# FFT to shift to frequency domain - use frequency spectrum as features
fft_values = abs(fft(window))
feat = 20*scipy.log10(fft_values)
features[idx:, ] = feat
labels[idx] = nasal
idx += 1
return features[0:idx, ], labels[0:idx]
评论列表
文章目录