def read_data(instruments):
'''
Data pre-processing
'''
nins = len(instruments)
instruments = sp.array([sp.loadtxt('datafiles/'+x) for x in instruments])
def data(data, ins_no):
Time, Radial_Velocity, Err = data.T[:3] # el error de la rv
Radial_Velocity -= sp.mean(Radial_Velocity)
Flag = sp.ones(len(Time)) * ins_no # marca el instrumento al q pertenece
Staract = data.T[3:]
return sp.array([Time, Radial_Velocity, Err, Flag, Staract])
def sortstuff(tryin):
t, rv, er, flag = tryin
order = sp.argsort(t)
return sp.array([x[order] for x in [t, rv, er, flag]])
fd = sp.array([]), sp.array([]), sp.array([]), sp.array([])
for k in range(len(instruments)): # appends all the data in megarg
t, rv, er, flag, star = data(instruments[k], k)
fd = sp.hstack((fd, [t, rv, er, flag] )) # ojo this, list not array
fd[0] = fd[0] - min(fd[0])
alldat = sp.array([])
try:
staract = sp.array([data(instruments[i], i)[4] for i in range(nins)])
except:
staract = sp.array([sp.array([]) for i in range(nins)])
starflag = sp.array([sp.array([i for k in range(len(staract[i]))]) for i in range(len(staract))])
tryin = sortstuff(fd)
for i in range(len(starflag)):
for j in range(len(starflag[i])):
staract[i][j] -= sp.mean(staract[i][j])
totcornum = 0
for correlations in starflag:
if len(correlations) > 0:
totcornum += len(correlations)
return fd, staract, starflag, totcornum
评论列表
文章目录