def get_train_data(n_pos = 46443, n_neg = 206940,k=12):
'''
megre positive and negative examples
'''
suff = str(k)
X_name = 'train_data_'+ suff + '.npz'
y_name = 'labels_'+ suff + '.npz'
if not(os.path.exists(X_name) and os.path.exists(y_name)):
X_pos = []
# X_train_face,y_train_face = Datasets.get_train_face_wider_data(k = k)
# X_pos = X_train_face[y_train_face==1]
# X_pos = X_train_face
X_aflw,y_train_face_aflw = Datasets.get_aflw_face_data(k = k)
# if len(X_pos) > 0:
# X_pos = sp.vstack( [X_pos,X_aflw] )
# else:
# X_pos = X_aflw
X_pos = X_aflw
X_train_non_face,y_train_non_face = Datasets.get_train_non_face_data(k = k)
print('c1_pos:',len(X_pos))
#print((X_train_face[y_train_face==0].shape,X_train_non_face.shape))
# if len(X_train_face[y_train_face==0]) > 0:
# X_neg = sp.vstack( (X_train_face[y_train_face==0],X_train_non_face) )
# else:
# X_neg = X_train_non_face
X_neg = X_train_non_face
X_pos = shuffle(X_pos,random_state=42)
X_neg = shuffle(X_neg,random_state=42)
X_pos = X_pos[:n_pos]
X_neg = X_neg[:n_neg]
n_neg = len(X_neg)
n_pos = len(X_pos)
y_pos = sp.ones(n_pos,int)
y_neg = sp.zeros(n_neg,int)
X = sp.vstack((X_pos,X_neg))
y = sp.hstack( (y_pos,y_neg) )
X,y = shuffle(X,y,random_state=42)
sp.savez(X_name,X)
sp.savez(y_name,y)
评论列表
文章目录