transform.py 文件源码

python
阅读 42 收藏 0 点赞 0 评论 0

项目:GRIPy 作者: giruenf 项目源码 文件源码
def cwt_freq(data, wavelet, widths, dt, axis):
    # compute in frequency
    # next highest power of two for padding
    N = data.shape[axis]
    pN = int(2 ** np.ceil(np.log2(N)))
    # N.B. padding in fft adds zeros to the *end* of the array,
    # not equally either end.
    fft_data = scipy.fft(data, n=pN, axis=axis)
    # frequencies
    w_k = np.fft.fftfreq(pN, d=dt) * 2 * np.pi

    # sample wavelet and normalise
    norm = (2 * np.pi * widths / dt) ** .5
    wavelet_data = norm[:, None] * wavelet(w_k, widths[:, None])

    # Convert negative axis. Add one to account for
    # inclusion of widths axis above.
    axis = (axis % data.ndim) + 1

    # perform the convolution in frequency space
    slices = [slice(None)] + [None for _ in data.shape]
    slices[axis] = slice(None)

    out = scipy.ifft(fft_data[None] * wavelet_data.conj()[slices],
                     n=pN, axis=axis)

    # remove zero padding
    slices = [slice(None) for _ in out.shape]
    slices[axis] = slice(None, N)

    if data.ndim == 1:
        return out[slices].squeeze()
    else:
        return out[slices]
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号