def minimalForCompleteness(self):
print("Running estimator for minimal threshold for completeness")
labels=self.createLabels()
x = 0.00
dx = 0.05
countsList = {}
x_list = []
while x < 1:
Arrays= {}
FlatC = hierarchy.fcluster(self.Tree, x, criterion='distance')
counter=collections.Counter(FlatC)
Best = max(counter.iteritems(), key=operator.itemgetter(1))[0]
toProcess=[Best]
y=0
for cluster, filename in zip(FlatC,labels):
if cluster in toProcess:
hklFile = any_reflection_file(filename)
b= hklFile.as_miller_arrays()
for column in b:
if column.is_xray_intensity_array():
Arrays[y]=column
break
y+=1
try:
Arr = Arrays[0]
except:
countsList.append(0)
for label in range(1, y):
try:
Arr = Arr.concatenate(Arrays[label])
except:
pass
countsList[x]=(Arr.completeness())
x+= dx
# return minimal for max
L = []
for key in countsList:
if countsList[key]>0.98:
L.append(key)
L.sort()
return L[0]
评论列表
文章目录