def glmnet_softmax(x):
d = x.shape
nas = scipy.any(scipy.isnan(x), axis = 1)
if scipy.any(nas):
pclass = scipy.zeros([d[0], 1])*scipy.NaN
if scipy.sum(nas) < d[0]:
pclass2 = glmnet_softmax(x[~nas, :])
pclass[~nas] = pclass2
result = pclass
else:
maxdist = x[:, 1]
pclass = scipy.ones([d[0], 1])
for i in range(1, d[1], 1):
t = x[:, i] > maxdist
pclass[t] = i
maxdist[t] = x[t, i]
result = pclass
return(result)
#=========================
评论列表
文章目录