def table_log_likelihood(self):
log_likelihood = 0.
for document_index in xrange(self._D):
log_likelihood += len(self._k_dt[document_index]) * numpy.log(self._alpha) - log_factorial(len(self._t_dv[document_index]), self._alpha)
for table_index in xrange(len(self._k_dt[document_index])):
log_likelihood += scipy.special.gammaln(self._n_dt[document_index][table_index])
log_likelihood += scipy.special.gammaln(self._alpha)
return log_likelihood
评论列表
文章目录