def self_eval(pred,train_data):
'''
:pred
:train_data ?? labels
'''
try:
labels=train_data.get_label()
except:
labels=train_data
epsilon = 1e-15
pred = np.maximum(epsilon, pred)
pred = np.minimum(1-epsilon,pred)
ll = sum(labels*np.log(pred) + (1 - labels)*np.log(1 - pred))
ll = ll * (-1.0)/len(labels)
return 'log loss', ll, False
utils.py 文件源码
python
阅读 36
收藏 0
点赞 0
评论 0
评论列表
文章目录