def run_motif(type,cell,thresh_mode):
warnings.filterwarnings("ignore")
print "cross_validation_training"
print "motif features used"
# Read data
filename = "./pairs_%s%s_motif.mat"%(str(type),str(cell))
data = scipy.io.loadmat(filename)
x = np.asmatrix(data['seq_m'])
y = np.ravel(data['lab_m'])
y[y<0]=0
print "Positive: %d Negative: %d" % (sum(y==1), sum(y==0))
k_fold = 10
if thresh_mode==0:
k_fold1 = 0
elif thresh_mode==1:
k_fold1 = 1
else:
k_fold1 = 5
metrics_vec, pred, predicted, features1 = parametered_cv(x,y,k_fold,k_fold1,serial)
filename1 = "test_%s%s_motiflab.txt"%(str(type), str(cell))
filename2 = "test_%s%s_motifprob.txt"%(str(type), str(cell))
filename3 = "test_%s%s_motiffeature.txt"%(str(type), str(cell))
np.savetxt(filename1, pred, fmt='%d %d %d', delimiter='\t')
np.savetxt(filename2, predicted, fmt='%f %f', delimiter='\t')
np.savetxt(filename3, features1, fmt='%d %f', delimiter='\t')
filename4 = "test_%s%s_motifthresh2.txt"%(str(type), str(cell))
np.savetxt(filename4, metrics_vec, fmt='%f %f %f %f %f', delimiter='\t')
# Cross validation for PEP-Integrate
评论列表
文章目录