def update_opt(self, loss, target, inputs, extra_inputs=None, *args, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
self._target = target
def get_opt_output():
flat_grad = tensor_utils.flatten_tensor_variables(
tf.gradients(loss, target.get_params(trainable=True)))
return [tf.cast(loss, tf.float64), tf.cast(flat_grad, tf.float64)]
if extra_inputs is None:
extra_inputs = list()
self._opt_fun = ext.lazydict(
f_loss=lambda: tensor_utils.compile_function(
inputs + extra_inputs, loss),
f_opt=lambda: tensor_utils.compile_function(
inputs=inputs + extra_inputs,
outputs=get_opt_output(),
)
)
评论列表
文章目录