def test():
print("testing...")
generator_model = "gen_epoch_39.pth"
discriminator_model = "disc_epoch_39.pth"
generator.load_state_dict(torch.load(generator_model))
discriminator.load_state_dict(torch.load(discriminator_model))
dump_sheet = True
if (dump_sheet):
fake = generator(fixed_noise)
out_file = "sheet.png"
print("saving to: " + out_file)
vutils.save_image(fake.data, out_file)
make_video = True
if (make_video):
video_noise = Variable(torch.FloatTensor(1, nz, 1, 1)).cuda()
video_noise_cpu = fixed_noise[0].data.cpu().numpy()#np.random.normal(loc=0.0, scale=1.0, size=[1, nz, 1, 1])
video_noise.data.copy_(torch.from_numpy(video_noise_cpu))
noise_vel_speed = 0.05
video_noise_vel = np.random.uniform(low=-noise_vel_speed, high=noise_vel_speed, size=[1, nz, 1, 1])
num_frames = 300
for frame_idx in range(num_frames):
print(frame_idx)
video_frame = generator(video_noise).data.cpu().numpy()
video_frame = video_frame.reshape([nc, image_size, image_size]).transpose()
scipy.misc.imsave("frame_" + str(frame_idx).zfill(5) + ".png", video_frame.reshape([image_size, image_size]))
video_noise_cpu = np.mod(video_noise_cpu + video_noise_vel, 1.0)
video_noise.data.copy_(torch.from_numpy(video_noise_cpu))
评论列表
文章目录