def test():
print("testing...")
predictor_model = sys.argv[3]
predictor.load_state_dict(torch.load(predictor_model))
img_outputs = predict_test_sequence().data.cpu().numpy()
for i in range(num_outputs):
img = img_outputs[i].reshape(num_components, image_size, image_size)
img = np.swapaxes(img, 0, 1)
img = np.swapaxes(img, 1, 2)
print(img.shape)
scipy.misc.imsave("output_" + str(i).zfill(3) + ".png", img)
#train()
评论列表
文章目录