def _set_SNR_grids(self):
""" Set the grids and weights for SNR used in numerical integration
of SNR parameters.
"""
if self.SNR_prior == 'unif':
SNR_grids = np.linspace(0, 1, self.SNR_bins)
SNR_weights = np.ones(self.SNR_bins) / (self.SNR_bins - 1)
SNR_weights[0] = SNR_weights[0] / 2.0
SNR_weights[-1] = SNR_weights[-1] / 2.0
elif self.SNR_prior == 'lognorm':
dist = scipy.stats.lognorm
alphas = np.arange(np.mod(self.SNR_bins, 2),
self.SNR_bins + 2, 2) / self.SNR_bins
# The goal here is to divide the area under the pdf curve
# to segments representing equal probabilities.
bounds = dist.interval(alphas, (self.logS_range,))
bounds = np.unique(bounds)
# bounds contain the boundaries which equally separate
# the probability mass of the distribution
SNR_grids = np.zeros(self.SNR_bins)
for i in np.arange(self.SNR_bins):
SNR_grids[i] = dist.expect(
lambda x: x, args=(self.logS_range,),
lb=bounds[i], ub=bounds[i + 1]) * self.SNR_bins
# Center of mass of each segment between consecutive
# bounds are set as the grids for SNR.
SNR_weights = np.ones(self.SNR_bins) / self.SNR_bins
else: # SNR_prior == 'exp'
SNR_grids = self._bin_exp(self.SNR_bins)
SNR_weights = np.ones(self.SNR_bins) / self.SNR_bins
SNR_weights = SNR_weights / np.sum(SNR_weights)
return SNR_grids, SNR_weights
评论列表
文章目录